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b Areté Associates, Sherman Oaks, CA 91403, United States

Received 11 December 2006; received in revised form 24 August 2007; accepted 28 August 2007
Available online 12 September 2007
Abstract

We present a new method for construction of high-order parametrizations of surfaces: starting from point clouds, the
method we propose can be used to produce full surface parametrizations (by sets of local charts, each one representing
a large surface patch – which, typically, contains thousands of the points in the original point-cloud) for complex surfaces
of scientific and engineering relevance. The proposed approach accurately renders both smooth and non-smooth portions
of a surface: it yields super-algebraically convergent Fourier series approximations to a given surface up to and including
all points of geometric singularity, such as corners, edges, conical points, etc. In view of their C1 smoothness (except at
true geometric singularities) and their properties of high-order approximation, the surfaces produced by this method are
suitable for use in conjunction with high-order numerical methods for boundary value problems in domains with complex
boundaries, including PDE solvers, integral equation solvers, etc. Our approach is based on a very simple concept: use of
Fourier analysis to continue smooth portions of a piecewise smooth function into new functions which, defined on larger
domains, are both smooth and periodic. The ‘‘continuation functions’’ arising from a function f converge super-algebra-
ically to f in its domain of definition as discretizations are refined. We demonstrate the capabilities of the proposed
approach for a number of surfaces of engineering relevance.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The problem of producing high-order parametrizations of surfaces and, more generally, for given integers d

and n (d < n), high-order parametrizations of d-dimensional manifolds in n-dimensional space, is one of great
importance in a wide range of fields of science and engineering. The numerical solution of partial differential
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equations (PDE) with high-order accuracy (see e.g. [4,6,7,9,10,14,36]), for example, requires construction of
highly accurate, high-order representations of domain boundaries; it is indeed this particular application that
motivated the work discussed in this paper. Engineering descriptions of surfaces are usually provided in some
file format, such as might be created using a computer aided design (CAD) system; generally, the raw geom-
etry representations available in engineering practice must be processed to satisfy the requirements of a high-
order application. As an example of the geometry processing that might be required, consider the aircraft wing
shown in Fig. 20: high-order solution of PDE boundary value problem associated with this geometry is only
possible once the high-order information implicit in the low order definition of the bounding surface is appro-
priately extracted.

In this paper we introduce an algorithm for creation of high-order surface representations from given point
data. The proposed approach is based on a innovative paradigm: representation of two-dimensional surfaces
in three-dimensional space on the basis of large patch surface parametrizations that result from Fourier anal-
ysis and a certain ‘‘continuation method’’ [8,12] for construction of rapidly converging Fourier series. Briefly,
the continuation method enables creation of rapidly convergent Fourier series from discrete point values of
functions that are smooth but not necessarily periodic. The Fourier approximations resulting from the con-
tinuation method are C1 smooth (except at true geometric singularities) as well as highly accurate: function
and derivatives are approximated with high-order accuracy. This method effectively eliminates the Gibbs ring-
ing by continuing the function into a larger domain, thus allowing for periodicity to occur; the continuation
functions, such as those depicted in Fig. 2, are produced automatically by the continuation method through
use of a certain least-squares procedure, and need not in any way be provided by the user.

(The Fourier continuation method had thus far been considered, in a handful of contributions, as an ele-
ment in solvers for partial differential equations. In fact we rediscovered the continuation method indepen-
dently [3] while developing the surface representation methods described in this text. In the Appendix,
further, we present novel uses of the idea of Fourier continuation giving rise to resolution of the Gibbs phe-
nomenon for the problem of evaluation of Fourier series of non-periodic smooth functions.)

Although applications of techniques described in this text into various areas of computer aided design
could be envisioned, including reverse engineering [17,18] and CAD/mesh-repair [5,28,31], the focus of the
present contribution is to provide a methodology that enables construction of surface representations suitable
for use in conjunction with efficient PDE solvers – for PDEs defined either on the surfaces themselves or on
volumes bounded by them [4,6,7,9,10,14,36,40]. The types of surface representation methods that have
emerged from the CAD field are not well adapted for solution of such PDE problems with high-order accuracy:
an excellent discussion in these regards is given in [15]. Existing reverse engineering approaches, for example,
can give rise to small NURBS parametrization patches with, usually, smoothness of low order across patches
(typically smoothness of an order no higher than first occurs at certain points in the representation). The pres-
ence of either of these two characteristics virtually rules out the possibility of an effective high-order solver
methodology – of desirable orders such as 5, 10, 20, even1: large patches allow for use of large locally-Carte-
sian grids, spectral representations, etc., while high-order surface representations are of course necessary to
obtain a corresponding high-order solution accuracy. Smoothness of arbitrary order has previously been
achieved on the basis of spline approximations [16,35,37], but the required polynomial degrees grow rapidly
as smoothness requirements are increased. Use of interpolations involving such high-degree polynomials
results in oscillations and low quality representations; thus explicit constructions often considered in practice
are of C1 or C2 continuity; see e.g. [2,32,33].

These characteristics of previous reverse-engineering approaches stem mainly from two shared design traits:
(a) use of polynomial or rational approximants and (b) use of representations which, in smooth portions of the
surface are smoothly matched along a system of curves, so that the intersection between two patches is either
empty or a portion of a matching curve. While maintaining their reliance on use of polynomial approximants
(point (a)), previous manifold-representation methodologies [13,41] relax the requirement (b) by resorting to (c)
use of overlapping patches; they achieve this by employing very small patches [30, p. 644]: the domains of the
various local parametrizations are closely related to the stars of single vertices in the original mesh, and the size
of a patch corresponds closely to the size of the corresponding star. While the resulting parametrizations are
smooth, further, they follow closely the non-smooth discrete representations on which they are based – consider
e.g. the left portion of Fig. 21, and they are thus likely to exhibit significant oscillations and departures from the



1096 O.P. Bruno et al. / Journal of Computational Physics 227 (2007) 1094–1125
actual surface they approximate. Finally, the size of a patch resulting from these approaches is of the order of the
discretization mesh, and, indeed, it tends to zero as the discretization mesh tends to zero – which, as discussed
above, presents a difficulty if the representations are to be used as a basis for high-order PDE solvers.

The methodology proposed in this paper does not rely on either of the methodologies (a) or (b) just
described. As mentioned above, instead of polynomials this approach utilizes a Fourier basis and the contin-
uation method. The advantages of this strategy are very significant: very large continuation patches can be
used without giving rise to undesirable oscillations or other unacceptable approximating properties. A wide
range of examples of this fact are presented in this paper; a very simple one-dimensional example, presented
in Table 10, may be particularly useful: using a given set of data, the errors in a continuation approximation of
a function were reduced to the order of machine precision, with or without use of oversampling, while the cor-
responding polynomial approximations diverge grossly in the non-oversampled case, and fail to converge even
in the oversampled case.

Concerning points (b) and (c), on the other hand, our methodology bears some connections with previous
manifold-construction approaches, but in practice differs significantly from them. On one hand, the space of
parameters used in the methodology proposed in this text, which consist of certain ‘‘projection surfaces’’ (that
are in fact akin to the ‘‘simple base-surfaces’’ described in the reverse-engineering text [17, p. 659]), are not
based in any way on underlying meshes. And, unlike previous manifold-representation approaches (which
are based on construction of edge, vertex and face patches [13] or stars of vertices [41]) can give rise to para-
metrizations involving very large patches, see Section 3. On the other hand, the identification functions we use
in the patch-blending step (at patch overlaps), cannot depend, unlike those used by previous manifold-repre-
sentation approaches [13,41], on use of an underlying mesh – since, as mentioned above, in order to allow for
construction of large patches, meshes are not used by our method. Instead, our identification procedures at
smooth portions of a surface result from use of intersections of lines with two or more patches: roughly speak-
ing, if a normal to one patch at a point intersect another patch, then the two intersection points are identified
and subsequently blended by means of a C1 partition-of-unity. A corresponding matching of edges is intro-
duced for description of surfaces around actual physical edges; see Sections 4 and 5 for details.

Since the methodology we present is based on use of point clouds, correction of CAD inaccuracies as well as

intelligent model defeaturing can be made to follow from use of the continuation method (see e.g. Figs. 20 and 21).
As discussed in Section 5, geometric singularities such as corners, edges, conical points, etc., which are of great
importance in many applications, can be treated effectively in this framework as well: high-order accurate
approximations of surfaces and their derivatives of various orders result from the proposed approach up to

and including points of geometric singularity. In all, the methodology presented in this paper produces high-
quality surface parametrizations consistent with the information available in a given geometry description;
as finer and finer discretizations of the given surface are provided, further, the approximations converge spec-
trally to the underlying surface.

This paper is organized as follows. In Section 2 we present the continuation method and we discuss its con-
vergence properties in presence of both noiseless and noisy data. A number of specific methodologies we use to
parametrize given point data by means of the continuation method are then presented in Sections 3–5: in Sec-
tion 3 we discuss the basic patching-and-parametrization strategy on which our approach is based; in Section 4
we present techniques that can be used to ensure perfect matching of patches in overlap regions and to construct
smooth partitions-of-unity throughout the surface; and in Section 5 we extend the methodologies of Section 4
to enable perfect matching of patches at corners, edges and other geometric singularities. Examples demonstrat-
ing the character of the surfaces produced by this method are given throughout the text. As mentioned above, in
Appendix A we present, for completeness, novel uses of the idea of Fourier continuation giving rise to resolu-
tion of the Gibbs phenomenon for the problem of evaluating Fourier series of discontinuous functions, and we
place this methodology in the context of the existing related literature. In Appendix B, finally, we present an
approach that can be used to improve some conditioning aspects of the Fourier continuation problem.

2. The continuation method

The continuation method results as one seeks to reproduce, for non-periodic functions, the excellent prop-
erties of convergence of Fourier series of smooth periodic functions. To gain a sense of the properties of the
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continuation method let us at first consider Fig. 1: For a function y = f(x) defined, say, in the interval
0 6 x 6 1 (in our first example we take f(x) = x), the truncated Fourier series Sn

f of f oscillates around the
points of discontinuity in a periodic extension of f with period 1 (the Gibbs phenomenon), and it thus con-
verges poorly to f as n!1. To overcome this difficulty, the continuation method seeks an approximating
Fourier series of periodicity larger than the domain of definition of f(x) – in our example, displayed in
Fig. 2, the enlarged periodicity interval is 0 6 x 6 2. An oversampled linear algebra problem is then used
to obtain a number M of Fourier coefficients so that the corresponding Fourier series matches, in the least-
squares sense, the values of the function at the given N possibly non-equispaced points (N > M) in the interval
0 6 x 6 1. The continuation functions, such as the one depicted in Fig. 2 left, are produced automatically by
the oversampled-interpolation algorithm: no values are provided to the algorithm beyond those available in
the domain of definition of the function—in this case, the extension to the full interval 0 6 x 6 2 results
directly from the algorithm, without any recourse to user-supplied data in the interval 1 6 x 6 2. From the
depiction and tabular values presented in Fig. 2 we see that excellent approximations are obtained for the
function and its derivatives throughout the interval of definition, including the endpoints.
Fig. 1. The Gibbs phenomenon.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.5

0

0.5

1

1.5

Fig. 2. Left: Interpolation of the function f(x) = x using the continuation method on N data points in the interval [0,1], M = N/2. Tables:
maximum interpolation errors in the interval [0,1] for the function and its first two derivatives, and for various values of N. Upper table:
Uniform discretizations as in Eq. (1). Lower table: unevenly spaced points xj = (j � 1)/(N � 1) + dj where d0 = dN = 0 and, for
1 6 j 6 (N � 1),dj are uniformly distributed random values with jdjj 6 1/(N � 1).



1098 O.P. Bruno et al. / Journal of Computational Physics 227 (2007) 1094–1125
Remark 1. In Table 1 and throughout this paper, maximum errors are computed through comparison of
approximations and exact functions at sufficiently large numbers (thousands) of points to insure complete
resolution of all function features and accurate estimates of maximum errors.

A detailed description of the continuation method in two and three dimensions is presented in Sections 2.1
and 2.2. In Section 2.3 we then demonstrate the benefits brought about by the use of oversampling (see also
[8]), and we provide a brief theoretical discussion of the properties of the continuation method. As mentioned
above, in the subsequent Sections 3–5 we present and demonstrate a collection of techniques we developed
which, in conjunction with the continuation method, make up an effective methodology for high-order param-
etrization of surfaces.

2.1. The continuation algorithm and ‘‘least-squares trigonometric interpolation’’: one-dimensional case

Let y = f(x) be a smooth function defined in the interval 0 6 x 6 1, f 2 Ck[0, 1] with either k a positive inte-
ger or k =1. Further, let xj be an increasing sequence of points in that interval satisfying 0 6 xj 6 1,
j = 1, . . .,N, x1 = 0, xN = 1, and let yj = f(xj). Note that the abscissae xj need not be equally spaced; the case
in which the sampling points are equispaced,
Table
Error
evenly

M

4
8
16
32
64

8
16
32
64
128
xj ¼
j� 1

N � 1
; j ¼ 1; . . . ; N ð1Þ
is of practical and theoretical importance, if not the one that arises most often in surface representation
applications.

The continuation method produces certain least-squares interpolations by trigonometric polynomials of the
point values (xj, yj). The essence of the continuation method lies in using trigonometric polynomials which

1. Have a periodicity interval [0, b] larger than [0,1] (i.e. b > 1);
2. Contain a total of M Fourier modes, with M typically smaller than N; and which
3. Match the given data points in the sense of least-squares.

In detail, defining the column vectors x = (x1, . . .,xN)T and y = (y1, . . .,yN)T, the continuation method pro-
duces trigonometric approximations with Fourier coefficients a = (a�M/2, . . .,a0, . . .,aM/2�1)T for M even and
a = (a�(M�1)/2, . . .,a0, . . .,a(M�1)/2)T for M odd. Letting tðMÞ ¼ fj 2 N : �ðM � 1Þ=2 6 j 6 ðM � 1Þ=2g for M

odd and tðMÞ ¼ fj 2 N : �M=2 6 j 6 M=2� 1g for M even, the coefficients ak are obtained as the least-

squares solution of the (over-determined) system of linear equations
yj ¼
X

k2tðMÞ
ake

2pi
b kxj ; j ¼ 1; . . . ; N : ð2Þ
1
in the interpolation of f(x) = x shown in Fig. 2 by continuing the function to a smooth periodic function, with data given for N

spaced data points and M mode number

N Max. error Ratio Max. d/dx err Ratio Max. d2/dx2 err Ratio

8 1.4 · 10�2 4.6 · 10�1 4.8 · 100

16 4.9 · 10�4 2.9 · 101 3.7 · 10�2 1.2 · 101 1.4 · 100 3.4 · 100

32 6.2 · 10�7 7.9 · 102 1.3 · 10�4 2.9 · 102 1.7 · 10�2 8.3 · 101

64 2.4 · 10�12 2.5 · 105 1.4 · 10�9 9.4 · 104 5.1 · 10�7 3.3 · 104

128 1.5 · 10�14 1.7 · 102 1.1 · 10�11 1.2 · 102 8.6 · 10�9 5.9 · 101

8 8.3 · 10�4 4.4 · 10�2 1.5 · 100

16 3.4 · 10�6 2.5 · 102 4.5 · 10�4 9.8 · 101 4.1 · 10�2 3.7 · 101

32 1.5 · 10�10 2.2 · 104 4.9 · 10�8 9.3 · 103 1.1 · 10�5 3.7 · 103

64 2.0 · 10�11 7.5 · 100 1.3 · 10�8 3.8 · 100 5.6 · 10�6 2.0 · 100

128 1.4 · 10�10 1.4 · 10�1 1.9 · 10�7 6.8 · 10�2 1.7 · 10�4 3.2 · 10�2
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Remark 2. For real valued functions f, significantly reduced computing times result from use of sin/cos
expansions rather than expansions in terms of complex exponentials. For notational convenience, however, all
of our descriptions and theoretical discussions use the complex exponential notation.

Clearly, the system of Eq. (2) can be re-expressed in the form
y ¼ Aa ð3Þ

where A is a (typically not square) N · M matrix. The approximation produced by the continuation method is
thus defined as
f cðxÞ ¼ f c
N ;MðxÞ ¼

X
k2tðMÞ

ac
ke

2pi
b kx ð4Þ
with coefficients ac ¼ ðac
kÞk2tðMÞ equal to the least-squares solution of Eq. (3), that is, the solution of the min-

imization problem
min
ðakÞ

XN

j¼1

X
k2tðMÞ

akepikxj � yj

�����
�����
2

: ð5Þ
Eqs. (4) and (5) provide a complete description of the continuation method for functions defined in a one
dimensional interval. Theoretical questions associated with the algorithm, including its convergence properties
for a given continuation interval [0, b] and number M = M(N) of modes used for a given number N of discret-
ization points, are addressed in Section 2.3. A discussion of the relative performance of the algorithm that
result as various possible (e.g. iterative) solvers are used for least-squares problem 5 will be provided else-
where; throughout this paper we use an SVD based least-square solver as described in [34, pp. 57–58]. Before
considering theoretical questions and implementation issues, however, we briefly discuss the continuation
algorithm in two and higher dimensions.

2.2. The continuation algorithm in dimensions d P 2

Clearly the algorithm described in the previous section generalizes directly to functions defined in d-dimen-
sional cubes, d P 2. Interestingly, further, by the very nature of the approach, the function to be approxi-
mated needs not be defined in a d-dimensional cube, see e.g. Fig. 7. Thus, the data from which a function
is to be approximated can be given as an irregular sampling of the function in an arbitrary region in Rd ;
see also Remark 3.

2.3. Some theoretical considerations

In this section we discuss the convergence properties of the continuation method for a smooth function
f : ½0; 1� ! R. For simplicity we (1) Restrict our theoretical discussion to functions of d = 1 variable (the
extension to the case d > 1 is direct), and we (2) Assume the discretization points are equispaced – given by
Eq. (1) for some N.

Since f is smooth (f 2 Ck[0,1] with either k a positive integer or k =1), for any b > 1 there exists a b-peri-
odic smooth continuation ~f : R! R of f, that is, ~f satisfies:

1. ~f 2 CkðRÞ
2. ~f ðxþ bÞ ¼ ~f ðxÞ for all x 2 R,
3. f ðxÞ ¼ ~f ðxÞ for x 2 [0,1].

The existence of such an extension can easily be established through consideration of the Taylor-series of f at
x = 0 and x = 1 and use of appropriate smooth windowing functions around x = 0 and x = 1.

The function ~f can be represented by its b-periodic Fourier series
~f ðxÞ ¼
X1

k¼�1
~akein2p

b x; ð6Þ
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where
~ak ¼
1

b

Z b

0

~f ðxÞe�ik2p
b xdx:
Since ~f is k-times continuously differentiable (k a positive integer or k =1) its truncated Fourier series
SMðxÞ ¼
X

k2tðMÞ
~akein2p

b x ð7Þ
converges rapidly to ~f : for example, if ~f 2 C1ðRÞ then both the Fourier coefficients ~ak for k 62 t(M) and the
error in the approximation of ~f by SM are super-algebraically small, that is, of the order of 1/Mp for all inte-
gers p. The corresponding approximation error is of order 1/Ms�1 if, say, ~f is piecewise ~f 2 C1 and ~f 2 CsðRÞ
for a finite positive integer s. Thus there indeed exists a (highly non unique!) series of the form 4 that approx-
imates f closely. The continuation method does not rely upon the numerically inaccurate Taylor-series-based
construction of a b-periodic extension of f mentioned above, or any other previously existing extension tech-
nique. Rather, the procedure embodied in Eqs. (4) and (5) produces a continuation function ~f ¼ f c and its b-
periodic finite Fourier series simultaneously by means of a suitable least-squares computation.

To study the convergence of the series (4) for large values of M and N we consider various (linear) prescrip-
tions M = M(N) for the number M of modes used for a given discretization size N. Clearly, we might use
M(N) = N modes to produce all N modes with indexes k 2 t(M) through inversion of a N · N nonsingular
matrix. Or, we may use M(N) < N and a corresponding oversampled linear system of equations. A particular
selection of the function M(N) gives rise to a specific instance of the continuation algorithm; the merits of var-
ious such selections are discussed in what follows. A selection we have often found useful is M(N) = [N/2], for
which the total number of modes is roughly one-half of the number of sampling points used.

An understanding of the properties of the continuation method for some prescription M = M(N) can be
gained once knowledge is available on the behavior of the algorithm on b-periodic complex exponentials.
Indeed, since ~f ðxÞ ¼ f ðxÞ for 0 6 x 6 1, Eq. (6) tells us that the approximation f c ¼ f c

N ;M that arises from
application of the (M,N) continuation method to f equals
f c
N ;MðxÞ ¼

X1
n¼�1

~anen
N ;MðxÞ; ð8Þ
where en
N ;M denotes the function
en
N ;MðxÞ ¼ ein2p

b x
n oc

N ;M
; ð9Þ
that is, the result of an application of the continuation method with N points and M modes to the exponential
ein2p

b x. For future use we introduce notation concerning applications of the continuation method in finite pre-
cision arithmetic: we have
_f c
N ;MðxÞ ¼

X1
n¼�1

~an _en
N ;MðxÞ; ð10Þ
where _f c
N ;M and _en

N ;M denote the result of an application of the continuation method to the function f and to the
exponential ein2p

b x, respectively, using finite precision arithmetic – and, as before, using N discretization points
and M Fourier modes.

Comparing Eqs. (6) and (8) we see that the error in an exact arithmetic continuation approximation for a
given pair (M,N) can be bounded in terms of the quantities
EN ;M ¼ max
n2tðMÞ

max
06x61

en
N ;MðxÞ � ein2p

b x
��� ��� and BN ;M ¼ max

n62tðMÞ
max
06x61

en
N ;MðxÞ
��� ���: ð11Þ
Clearly EN,M = 0 (compare _EN ;M below, however), so that our main error estimate is given by
jf ðxÞ � f c
N ;MðxÞj 6 BN ;M �

X
k 62tðMÞ

j~akj ð12Þ
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for all x 2 [0,1]. In view of the rapid decay of the coefficients ~an that, as mentioned above, arises for smooth
functions f, the sum in Eq. (12) converges rapidly to zero as M!1. Thus, if for a given choice of the function
M = M(N) we have that BN,M(N) is uniformly bounded for all N, or, otherwise, it does not grow too rapidly as
N!1, the convergence of f c

N ;MðxÞ to f(x) results. As shown below, under the current assumption the N dis-
cretization points are equispaced and provided the quantity b(N � 1) is an integer, for a given value of N the
coefficient BN,M(N) can be easily obtained through evaluation of a finite number of quantities.

The use of finite precision arithmetic requires additional considerations: as in the exact arithmetic case, here
we have
Table
The qu
variou

b

1.5

2

4

Unifor
jf ðxÞ � _f c
N ;MðxÞj 6 _EN ;M �

X
k2tðMÞ

j~akj þ _BN ;M �
X

k 62tðMÞ
j~akj ð13Þ
for all x 2 [0,1], where
_EN ;M ¼ max
n2tðMÞ

max
06x61

_en
N ;MðxÞ � ein2p

b x
��� ��� and _BN ;M ¼ max

n62tðMÞ
max
06x61

_en
N ;MðxÞ
��� ���:
(For notational simplicity here and in what follows we do not differentiate between the exact coefficients ~ak

and their numerical approximations.)
A similar discussion to that provided for the case of exact arithmetic applies here: In view of the rapid decay

of the coefficients ~an the first sum in Eq. (13) remains uniformly bounded as M!1, while second sum in Eq.
(13) converges rapidly to zero as M!1. Thus, if for a given choice of the function M = M(N) we have that
_EN ;MðNÞ remains almost vanishingly small (as it may be expected since EN,M(N) = 0 and as is verified numeri-
cally in Table 2) and BN,M(N) is uniformly bounded for all N (or, otherwise, it does not grow too rapidly as
N!1), then a rapid convergence of _f c

N ;M to f ensues.
As mentioned above, under the current assumption of an equispaced discretization and provided the quan-

tity b(N � 1) is an integer, for a given value of N the coefficients _BN ;MðNÞ and _EN ;MðNÞ can be obtained through
evaluation of a finite number of quantities. Indeed, we see that that for x on the equispaced set (1) of N discret-
ization points, to which the material in the present section is restricted, a certain pure-mode ein2p

b x with
n > b(N � 1) coincides with eir2p

b x, where r(jrj < b(N � 1)) is the remainder of the division of n by b(N � 1).
Clearly, thus,
_en
N ;M ¼ _er

N ;M
and the maximum in n in the definition of (Eq. (11)) can be produced by evaluating the finitely many quantities
_er
N ;M ; for 0 6 r < bðN � 1Þ:
Table 2 displays _E and _B for parameter values that allow evaluation of these quantities by means of finitely
many operations, as described above. In conjunction with Eq. (13), this table gives rigorous estimates on the
approximation errors that may be expected as the continuation method is applied to a given function f. We
emphasize, however, that the convergence behavior of the algorithm is independent of the assumptions of this
section; in view of a wealth of numerical experiments we expect the estimates arising from Table 2 and Eq. (13)
2
antities _EN ;MðNÞ and _BN ;MðNÞ for extension of functions in the interval [0,1] to the interval [0,b], with M(N) = (N � 1)/2 and for

s values of b

N = 9 N = 17 N = 33 N = 65 N = 129 N = 257 N = 513

_EN ;MðNÞ 2 · 10�15 4 · 10�15 1 · 10�14 4 · 10�14 3 · 10�12 1 · 10�11 3 · 10�11

_BN ;MðNÞ 1 · 100 1 · 100 2 · 100 6 · 100 4 · 102 9 · 102 1 · 103

_EN ;MðNÞ 1 · 10�15 2 · 10�15 2 · 10�15 3 · 10�14 8 · 10�14 6 · 10�13 3 · 10�13

_BN ;MðNÞ 1 · 100 1 · 100 3 · 100 2 · 101 1 · 102 1 · 102 2 · 102

_EN ;MðNÞ 1 · 10�15 2 · 10�15 2 · 10�15 6 · 10�15 2 · 10�14 4 · 10�14 6 · 10�14

_BN ;MðNÞ 1 · 100 2 · 100 3 · 100 9 · 100 1 · 101 1 · 101 1 · 101

m discretizations; integer values of b(N � 1).
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portray the convergence behavior of the continuation method under rather generic conditions, including pos-
sibly non-equispaced discretizations and non-integer values of b(N � 1).

2.4. Parameter values

While the discussion of the Section 2.3 provides a clear rationale for the properties of the continuation
method under various choices of oversampling ratio q and continuation length b, it is difficult in practice to select
these parameters on the basis of the results of that section – since, for a given smooth function f, bounds on the
values of the Fourier coefficients of a continuation of f are not know a priori. We have thus conducted extensive
sets of experiments to gain a sense of the values that can generally be used for the parameters of the algorithm.
We illustrate some typical situations in Tables 3–5; as can be seen in these tables, the rule-of-thumb b = 2 and
q = 0.5 we commonly use is generally appropriate, although not necessarily optimal. Table 3 shows that for the
simple function f(x) = x our rule-of-thumb gives rise to significantly suboptimal convergence: use of parameter
values b = 4 and q = 1 leads to much faster convergence in this case. The situation is reversed in other cases; one
notable example is that considered in Table 4: the famous Runge function, for which polynomial approximation
Table 3
Interpolation errors for the function y = x in the interval [0,1] to the interval [0,b], for various values of b, and using a number
M(N) = q · N of Fourier modes

b q N = 8 N = 16 N = 32 N = 64 N = 128

1.5 0.25 2.7 · 10�1 8.0 · 10�2 6.6 · 10�3 7.0 · 10�5 1.3 · 10�8

0.50 6.2 · 10�2 6.2 · 10�3 9.4 · 10�5 3.9 · 10�8 5.1 · 10�14

0.75 2.1 · 10�2 1.0 · 10�3 4.7 · 10�6 2.7 · 10�10 2.8 · 10�11

1.00 9.5 · 10�3 3.1 · 10�4 7.7 · 10�7 7.6 · 10�9 1.8 · 10�8

2 0.25 1.5 · 10�1 2.1 · 10�2 4.1 · 10�4 3.9 · 10�7 4.4 · 10�13

0.50 1.4 · 10�2 4.9 · 10�4 6.2 · 10�7 2.4 · 10�12 1.5 · 10�14

0.75 3.1 · 10�3 2.6 · 10�5 4.5 · 10�9 8.1 · 10�13 1.2 · 10�12

1.00 8.3 · 10�4 3.4 · 10�6 1.5 · 10�10 2.0 · 10�11 1.4 · 10�10

4 0.25 3.8 · 10�2 1.1 · 10�3 1.2 · 10�6 3.5 · 10�12 2.0 · 10�15

0.50 7.7 · 10�4 1.5 · 10�6 6.8 · 10�12 2.2 · 10�15 2.3 · 10�15

0.75 4.2 · 10�5 5.7 · 10�9 1.8 · 10�14 1.6 · 10�14 1.3 · 10�14

1.00 3.0 · 10�6 5.9 · 10�11 3.3 · 10�13 6.2 · 10�14 1.2 · 10�13

Uniform discretizations.

Table 4
Interpolation errors for the Runge function y ¼ 1

1þ25ð2x�1Þ2 in the interval [0,1] to the interval [0,b], for various values of b, and using a
number M(N) = q · N of Fourier modes

b q N = 32 N = 64 N = 128 N = 256

1.5 0.25 1.6 · 10�1 2.3 · 10�2 4.8 · 10�4 4.5 · 10�7

0.50 2.3 · 10�2 8.1 · 10�4 2.8 · 10�5 8.0 · 10�11

0.75 1.1 · 10�2 8.4 · 10�3 6.2 · 10�6 7.7 · 10�11

1.00 1.2 · 100 3.7 · 100 7.9 · 10�6 7.6 · 10�8

2 0.25 1.9 · 10�1 3.2 · 10�2 9.1 · 10�4 1.2 · 10�5

0.50 3.1 · 10�2 5.5 · 10�3 1.0 · 10�4 5.9 · 10�9

0.75 7.6 · 10�2 4.4 · 10�2 3.8 · 10�5 1.8 · 10�11

1.00 2.5 · 101 6.7 · 10�1 1.4 · 10�5 5.9 · 10�11

4 0.25 2.2 · 10�1 4.2 · 10�2 3.7 · 10�3 3.8 · 10�4

0.50 4.1 · 10�2 1.5 · 10�2 1.2 · 10�3 3.7 · 10�6

0.75 3.9 · 10�1 2.7 · 10�2 3.1 · 10�4 1.2 · 10�7

1.00 1.7 · 100 6.3 · 10�2 2.0 · 10�4 2.4 · 10�9

Uniform discretizations.



Table 5
Interpolation errors for the function y = exp(sin(5.4p x � 2.7p) � cos(2px)) in the interval [0,1] to the interval [0,b], for various values of
b, and using a number M(N) = q · N of Fourier modes

b q N = 64 N = 128 N = 256

1.5 0.25 4.2 · 10�2 3.4 · 10�4 9.2 · 10�9

0.50 1.3 · 10�3 5.1 · 10�7 8.1 · 10�14

0.75 2.3 · 10�3 2.9 · 10�10 4.7 · 10�11

1.00 1.7 · 10�2 2.3 · 10�8 3.5 · 10�8

2 0.25 6.2 · 10�2 10.0 · 10�4 2.7 · 10�7

0.50 8.2 · 10�3 9.4 · 10�7 1.3 · 10�13

0.75 1.9 · 10�2 8.6 · 10�8 2.2 · 10�12

1.00 2.2 · 10�2 1.1 · 10�10 2.1 · 10�10

4 0.25 8.1 · 10�2 6.2 · 10�3 3.1 · 10�4

0.50 8.7 · 10�3 5.8 · 10�4 2.2 · 10�7

0.75 3.0 · 10�2 7.4 · 10�5 9.6 · 10�11

1.00 4.2 · 10�2 6.2 · 10�6 6.4 · 10�14

Uniform discretizations.
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with increasing polynomial degrees fails to converge (see [7] as well as our discussion of approximations to the
Runge function in Section A.2). In this case (in which the function is already periodic although the period-1 peri-
odic extension is not smooth) use of b = 1.5 gives faster convergence than our rule-of-thumb value b = 2; the
combination b = 1.5 and q = 0.5 yields some of the most accurate results amongst those considered here. In
Table 5, finally, the rule-of-thumb choices b = 2 and q = 0.5 yields some of the best results. Our recommenda-
tion thus is that, in absence of information on the characteristics of the function approximated (as may be
obtained, for example, by trial and error approximations), the rule-of-thumb parameters b = 2 and q = 0.5
be used. For functions that are periodic or nearly so but whose period-1 periodic extension is not smooth, a value
of b smaller than 2 may be used to advantage. Of course, if the function admits a smooth periodic extension of
period 1, we can use b = 1.

2.5. Continuation and oversampling in presence of noisy data

In view of Tables 3–5 we conclude that use of oversampling can be advantageous to some extent in high-
precision arithmetic. The usefulness of oversampling is much more marked when the given data contain large
errors, as is the case in the surface representation problems we consider in the following sections. Indeed, the
high-frequencies present in the error components of the data tend to be amplified by the continuation algo-
Table 6
Approximation of the function y = x using noisy data in the interval [0,1] to the interval [0,2]. The noise is taken to equal either 10�2 or
10�3 times a data point dependent random number ‘‘rand’’ uniformly distributed in the interval [� 1,1]

M N Data point error Max. error Noise

16 16 1.2 · 10�12 2.1 · 10�1 rand · 10�2

32 32 9.2 · 10�5 2.4 · 102 rand · 10�2

16 16 8.8 · 10�14 1.0 · 10�2 rand · 10�3

32 32 4.1 · 10�5 1.2 · 102 rand · 10�3

8 16 9.7 · 10�3 1.0 · 10�2 rand · 10�2

16 32 7.7 · 10�3 8.6 · 10�3 rand · 10�2

8 16 5.3 · 10�4 1.2 · 10�3 rand · 10�3

16 32 8.4 · 10�4 9.6 · 10�4 rand · 10�3

Max error is the error between the exact function y = x (without noise) and the continuation obtained from the noisy data. Data point
error is the corresponding error at evenly spaced discretization points. The first two rows in the upper table correspond to Fig. 3, while the
first two rows in the lower table correspond to Fig. 4.



Fig. 3. Approximation of the function f(x) = x using the continuation method on N data points with random noise of magnitude of 10�2

using b = 2 and q = 1 (no oversampling); see Table 6. Left: N = 16. Right: N = 32.

Fig. 4. Approximation of the function f(x) = x using the continuation method on N data points with random noise of magnitude of 10�2

using b = 2 and q = 0.5 (oversampling); see Table 6. Left: N = 16. Right: N = 32.
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rithm, and give rise to bad approximations; the use of oversampling significantly alleviates this difficulty (see
Table 6).

We illustrate this point with a few examples, depicted in Figs. 3 and 4, which were obtained oversampling
factors of q = 1 (no oversampling) and q = 0.5, respectively. These results are representative of the typical
behavior observed: as illustrated in Fig. 4, oversampling is quite effective in eliminating undesirable artifacts
such as those found in Fig. 3.

3. Parametrization by patching, projection and continuation

Accurate surface representations of complex bodies can indeed be obtained through suitable applications of
the Fourier continuation method. As an example we present, in Fig. 5, Fourier-based representation of a com-
plete Falcon airplane. The depiction of the Falcon aircraft on the right of Fig. 5 was obtained as a plot of a
number of explicit smooth functions, each one of which, given by a Fourier series, represents a large portion of
the aircraft.



Fig. 5. Left: Falcon airplane, depicted directly from a triangulation obtained from the original CAD representation by means of a classical
surface meshing algorithm. Right: Falcon airplane, depicted as a combination of explicit smooth functions given by Fourier series, each
one of which represents a large portion of the aircraft surface.
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Starting from raw point data, (i.e. discrete data such as point clouds, triangulations, etc.), our approach
first seeks to extract portions or patches of the surface that subsequently are to be parametrized by the
continuation method. Patches are to be selected in such a way that there is a simple, possibly closed form
projection surface S upon which the discrete data can be projected – so that the given data amounts to a
discrete-valued function defined on the surface S. (In the case of point clouds extracted from triangulations
or CAD models, since the extracted point clouds do not need to satisfy stringent quality requirements, the
procedure of obtaining discrete parametrizations from the original representation could be handled rapidly
and effectively by means of an appropriate Graphical User Interface (GUI).) Naturally, it is best to select
patches and projection surfaces that give rise to as a smooth variation of the discrete function as possible.

Subsequently, the projection surface S is mapped onto a planar region, again seeking as smooth a mapping
as possible. The composition of the maps between the point cloud and the surface S with the map from the
surface S to the u � v plane thus gives rise to discrete parametrizations from discrete sets of points in the u � v

plane to the given point cloud. The continuation method is then applied to these discrete maps to produce local
smooth parametrizations which, appropriately assembled, blended and matched, as explained in the following
sections, make up the overall smooth surface representation. Our surface representation approach can thus be
summarized as follows:

1. Starting from a discrete geometry representation, first obtain a point cloud that adequately describes the
complete surface, and subdivide it into patches suitable for treatment as indicated in point 2 below. The
patches may only contain geometric singularities (e.g. slope-discontinuities) at patch boundaries and, fur-
ther, the points where geometric singularities exist must be labeled accordingly. In the case that the point
cloud is obtained from a triangulation or a CAD model, correction of inaccuracies is not necessary at this
stage, since such corrections result from use of the continuation method (see points 4 and 5 below as well as
Figs. 20 and 21). If needed, intelligent defeaturing, as well as feature reduction and enhancement, which do
need to be performed at this stage, can be performed with allowance for a degree of inaccuracy, and with-
out requirements of water-tightness (defects these which, again, are corrected through application of the
continuation method and the methodologies mentioned in points 4 and 5 below).

2. For each one of the patches mentioned in point 1 select appropriate (simple) projection surfaces (parabolic
surfaces, cylinders, cones, aggregates of simple curves centered around other simple curves, etc.) and use
them to produce a discrete parametrizations of the point clouds from planar surfaces.

3. To each such parametrization apply the continuation method described in Section 2 to obtain explicit func-
tions describing each one of the patches. Assembling all of these functions, explicit (overlapping) paramet-
rizations of the given surface are obtained; see, e.g. Figs. 5 and 14.

4. Overlapping regions which, owing to the discrete nature of the approximation, do not agree exactly, need to
be ‘‘blended’’, as described in Section 4.

5. Edges, corners and other geometric singularities which, again, owing to the discrete nature of the approx-
imation do not agree exactly, require ‘‘matching’’, as described in Section 5 below.
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Rather than providing general rules on how items 1–5 can be tackled, we provide details on how this was
done to produce the full airplane parametrization shown in Fig. 5; such details are presented in Sections 3.1
and 3.2 below.

3.1. A smooth wing patch

With reference to points 1 to 5 above;

1. The patch we consider in this section is a smooth curved portion of the front of the wing that spans outward
(away from the fuselage) from the wing slope-discontinuity line depicted in Fig. 20.

2.
(i) Fig. 6 right displays the point cloud that describes the wing portion selected and a section of a parabolic

projection surface S – the surface S is actually infinite in extent in all directions. Each red point rcl in the
point cloud is then projected onto the surface S in a direction orthogonal to S; call rs the resulting point
on S. This procedure gives a preliminary discrete function defined on S which maps rs! rcl. To produce
a discrete function defined on a flat u � v region we then seek a mapping from S onto a plane; in this case
it was found that a simple projection onto the z = 0 plane was perfectly adequate. In Fig. 7 left we show
the result of projecting all the points rs onto this plane. This procedure has thus produced a discrete
parametrization of the point cloud depicted in Fig. 6 from the domain depicted on the left portion of
Fig. 7. (Of course, the projection onto the z = 0 plane mentioned above is only useful after the point
cloud has been positioned appropriately, e.g. as shown in Fig. 7 left. Throughout this paper we assume
a capability is available that permits to select a region of a given surface, extract points in it, rotate,
translate, etc. In practice this can be accomplished by means of some appropriate software, commercial
or otherwise.)

(ii) For future reference we note that the points along the left and right boundaries of the discrete domain in
Fig. 6 left correspond to the left and right edges of the patch; the top and bottom boundary points, on
the other hand, resulted as a somewhat arbitrary choice was made to pare the back portion of the wing.
Notice that the left and right boundary points ought to delineate a smooth curve, corresponding to the
true, physical edges. The top and bottom curves, on the other hand, do not delineate a smooth curve
Fig. 6. Left: A wing portion selected from the original mesh representation. Right: Point cloud obtained from the original representation
and a parabolic projection surface.



Fig. 7. Discrete u � v parameter plane. Left: before additional u � v transformations. Right: result of u � v transformations applied to the
left figure. Note the perfectly straight left and right bounding lines, and the rugged bounding ‘‘curves’’ determined by the top and bottom
boundary points.
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since these points lie in the interior of wing, away from all physical edges. Call R the smallest rectangle
that contains all the points in this u � v projection, and let (u0, v0), (u0 + H, v0), (u0, v0 + K) and (u0 + H,
v0 + K) be the four vertices of R.

3.
(i) At this point the continuation method could be applied using, say, the continuation region Rcont with

vertices (u0,v0), (u0 + 2H, v0), (u0,v0 + 2K) and (u0 + 2H, v0 + 2K), to yield good representations of the
surface under consideration. Prior to this step, however, we introduce additional transformations in
u � v space to produce a u � v regions that match a rectangular domain as closely as possible: this pro-
cedure simplifies the necessary subsequent trimming, application of the cosine transform (see Appendix
B) as well as all construction of partitions-of-unity, surface blending and edge matching (Points 4 and 5).
See Remark 3 below.

(ii) Once the discrete parametrization implicit in Fig. 7 right has been obtained we are ready to apply the
continuation method using the continuation region Rcont to produce a parametrization. We note that
there are number of ways in which this could be done. For example, one could directly apply the con-
tinuation method to each one of the components (x, y, z) of the discrete map. Or, alternatively, one
could apply the continuation algorithm to the function q(u, v) = jrcl(u, v) � rs(u, v)j. See Remark 4 for
considerations concerning the relative advantages of using one or the other approach; here we demon-
strate the results we obtained by applying the continuation method to the function q. The continuation
method was applied to this discrete map (which is defined by a total of 2954 q values, from as many (u, v)
parameter-space points) using fifteen modes in each, the u and v directions, for a total of 225 Fourier
modes in two-dimensional u � v space. Thus we used roughly half as many modes as discretization
points in the v direction, but only about one sixth as many modes as discretization points in the u direc-
tion. This is in contrast with the comments in Section 2, where we suggested that use of half as many
modes as discretization points is usually a reasonable choice. The explanation is simple: the parameter
q varies rather slowly in the the u direction: use of larger numbers of modes in the u direction leads to no
additional improvements in the representation. (We have checked that use of thirty modes, for example,
results in an essentially identical parametrization; use of significantly less than fifteen modes, however,
gives rise to loss of accuracy. In accordance with the discussion of Section 2.5, in turn, use of inappro-
priately large numbers of modes, e.g. one-hundred in the u direction in this case, may give rise to poor
representations, arising as oscillations near patch boundaries.) The result of this application of the con-
tinuation method is shown in Fig. 8 left. Clearly, some departures occur between the upper left portion
of the surface produced by the continuation method and the corresponding section of the wing. These



Fig. 8. Left: The initial parametrization of the front of a Falcon airplane. Right: The final parametrization after trimming procedures were
applied to the figure on the left.
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departures are expected: they are caused by a lack of data in the corresponding region of the u � v plane
– around the horizontal lines v = 0 and v = 1 in the right portion of Fig. 7. This portion of the represen-
tation is simply incorrect, and should be trimmed, as indicated in what follows.

(iii) In accordance with the comments in item (i) above, it is easy to trim inaccurate portions of the surface:
after trimming the region of v < .1 or v > .9, the right picture of Fig. 8 is obtained. The lines u = 0 or
u = 1 could not possibly be trimmed: they are physical edges. Fortunately, however, they do not need
to be trimmed, since no missing data occurs along an actual physical edge.

Remark 3. Although the continuation method can be applied to data given on an arbitrary planar region, the
accuracy of the algorithm can be significantly improved by using data distributed in a region that is roughly
rectangular in shape. Note that a one-dimensional version of the continuation method or other approaches
can be used to produce approximate bounding curves, and, thus, by means of appropriate subtractions, to
transform the domains of definition of various patches into roughly rectangular regions.

Remark 4. Surface approximation based on the distance q = q(u, v) (see point 3 (ii) above) are generally pref-
erable over approximation of each one of the three functions r(u, v) = (x(u, v), y(u, v), z(u, v)) since, in the for-
mer case the inverse of r (which is needed e.g.; in expression (19) can often be computed in closed form – this is
not so in the latter case, for which use of Newton solver thus becomes necessary. An additional (minor) advan-
tage concerns computing times: the computational cost of approximating the single function q is, obviously,
one-third of that required to approximate the functions (x, y, z).
3.2. Nose patches

1. We now consider a smooth patch of the nose of the airplane, depicted in left portion of Fig. 13.
2. A point cloud of the nose of the airplane, containing 2003 points is depicted in Fig. 9 left; here a projection

surface is constructed as a collection of circles centered at the curve depicted within the nose point-cloud;
the right portion of the figure shows the corresponding u � v parameter points. Since at v = 1 only one data
point is available, (the nose tip, u = 0.5, v = 1), additional data points are included with 0 6 u 6 1, v = 1 the
image of all of which is the tip point itself. This procedure does not modify the given point cloud in any
way, of course, but it is beneficial in that it provides additional data points for the continuation method
along the boundary v = 1 in the u � v plane; see Fig. 11.

3. The continuation method is applied to the complete discrete parametrization (augmented at the tip as indi-
cated in point 1 above). We used twenty modes in the u direction, and twenty five modes in the v direction.
Since the surface to be parametrized is periodic in the u direction we used b = 1; see Section 2.4. In the v

direction, in turn, the value b = 2 was used. The reduced sampling rate that occurs around v = 1 line (com-
pared to the denser sampling around v = 0 combined with the fact that v = 1 is a boundary for the con-
tinuation method gives rise to some oscillations in the area surrounding the nose tip: the data in this
region is not sufficient to determine 20 · 25 Fourier modes. The data points do describe the surface satis-
factorily, however, so that the continuation method should reproduce it correctly if used in an appropriate
manner. We thus remove from the nose patch just obtained the portion corresponding to v P 0.9, see
Fig. 10, and we represent this portion by means of a separate application of the continuation method.
We then apply the continuation to the data in the region 0.6 6 v 6 1, which contains 510 data points. Using



Fig. 9. Discrete u � v parametrization of the nose of a Falcon airplane.

Fig. 10. Left: The initial parametrization of the nose of the Falcon airplane. Right: The final parametrization after the trimming
procedures indicated in point 3. above were applied to the parametrization displayed on the left.

Fig. 11. Discrete u � v parametrization of the tip of the nose of the Falcon airplane. The right figure coincides with the left one, except for
a row of points at v = 1 on the right figure, all of which are mapped to the nose tip.
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eight modes in the u direction and eight modes in the v direction the representation shown in Fig. 12 results;
no trimming procedure is necessary in this case. After blending (see Section 4), the combination of the two
overlapping patches just constructed gives rise to an adequate representation of the airplane nose – shown
in Fig. 13 right. Note that a total of two patches sufficed to parametrize the surface under consideration.

To visualize the sizes of the Fourier patches and the quality and degree of smoothness enjoyed by the para-
metrizations that result from the Fourier continuation method we present, in Figs. 13, 15, 20 and 21 close-ups
of some patches making up the representation of the Falcon airplane. In Fig. 20, in particular, we show a
close-up of the wing crease, making evident the beneficial effect the Fourier continuation method can have
as a geometry-repair agent. The mesh-repair property of the continuation method is highlighted, once again,
in Fig. 21: in this case a single Fourier series, in appropriate coordinates, was used to represent the aft tip of
the airplane.
Fig. 12. Parametrization of the nose tip.

Fig. 13. Left: Original representation of the Falcon aircraft nose. Right: two patch parametrization of the nose produced by the method
described in Section 3 after blending using the methodology presented in Section 4.



Fig. 14. Parametrization of an unmanned aerial vehicle (UAV).

Fig. 15. Two views of the nacelle surface. The full surface is made out of three Fourier series patches, one for the front and two for the
back inside and outside.
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3.3. Complete patch systems

Proceeding as indicated previously in this section, approximating parametrizations can be constructed that
include representations of every portion of a given piecewise smooth surface S; let us assume a number K of
patches Pj; j ¼ 1; . . . ; K; have thus been produced. Here we summarize the characteristics of the result of
such a construction; for generality we phrase our summary to include parametrizations of d-dimensional sets,
that is, curves in the plane or in space for d = 1 and surfaces in space for d = 2. (Clearly, the methodology
described in the previous sections applies to both curves and surfaces in space.) Given a surface or curve S
our approach thus produces

1. A collection of sets or ‘‘patches’’ Pj; j ¼ 1; . . . ; K; which collectively provide approximations of each por-
tion of S.

2. Each patch Pj is the image of a region Hj ¼ U j [ Bj � Hj contained in Rd (where Hj denotes the closure of
Hj in Rd) via a smooth and invertible map
rj : Hj ! R3; j ¼ 1; . . . ; K;
which admits a smooth inverse, and such that for d = 1 the derivative of rj does not vanish, and for d = 2
the vector product
Vj ¼ Vjðuj; vjÞ ¼ orj

ouj
� orj

ovj
ð14Þ
is bounded away from zero in Hj. Here for j ¼ 1; . . . ; K;U j � Rd is an open set and Bj is a (possibly empty)

portion of the boundary set oU j. The boundary portion Bj is itself a union of smooth curves for which the
algorithms in this section provide explicit parametrizations.

3. Portions of S may be approximated by two or more of the patches Pj.



1112 O.P. Bruno et al. / Journal of Computational Physics 227 (2007) 1094–1125
Owing to numerical errors patches may not (usually do not!) exactly overlap as they should in regions that
are approximated by more than one patch. In the next section we describe a methodology to eliminate this
problem and produce a fully conforming approximating surface from the collection of patches resulting from
the continuation method.

Remark 5. Boundaries oV and closures V of sets V 2 Rd were considered in point 2 above; the boundary and
closure operators used there are those defining closures and boundaries of subsets of the topological space Rd

with its standard topology: V is the set of points in Rd at zero distance from V and oV equals the closure of V
minus its interior. The boundary oS and closure S of a set S � Pj � R3 are hereby defined as the image under
the map rj of the boundary and closure within Rd of the set ðrjÞ�1ðSÞ, respectively.
4. Overlaps, mismatches and blending: the smooth case

Given a point cloud or some other discrete description of a d-dimensional set in three-dimensional space (a
surface for d = 2, a curve for d = 1), the approach described in Section 3 can be used to produce a description
of the complete set by a collection of overlapping approximating patches fPj; j ¼ 1; . . . ; Kg. Each one of
these patches represents a portion of the given set, with adjacent patches enjoying a degree of overlap – except
along corners, edges and other geometric singularities; see Section 5 for a treatment of such cases. Overlaps are
useful in a number of ways; in particular for d = 2 they allow for high-order parametrization of surfaces by
local patches without recourse to cumbersome surface-partitioning along, say, a class of smooth curves –
which may be difficult to produce. And, when used in conjunction with a smooth partition-of-unity, which
can be constructed as indicated in what follows, they facilitate evaluation of surface integral and differential
operators, solution of nonlinear functional, integral and differential equations, etc; see e.g. [4,26].

As illustrated in Fig. 16 however, numerical errors present in the given description of a d-dimensional set
and its approximations necessarily give rise to mismatches amongst the various representations of any overlap
portion. Therefore, at overlaps, the approximation of a surface or curve thus constructed is not uniquely spec-
ified and a surface that ought to be water-tight may not be so; clearly two undesirable characteristics. In par-
ticular, the classical differential-geometry change-of-variables relationship
tk ¼ ðrkÞ�1ðrjðtjÞÞ ð15Þ

that gives the k-th chart coordinates tk 2 Rd of the point with j-chart coordinates tj 2 Rd is not meaningful in
this case – since, owing to numerical errors, a point rj(tj), which should otherwise lie in the intersection of the
j-th and k-th patches, may not even lie in the image of the map rk; see Fig. 16. Fortunately it is not difficult to
Fig. 16. 1–1 correspondence between patches for overlapping region.
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blend the various overlapping parametrizations to produce matching and, if appropriate, water-tight represen-
tations while, at the same time, producing an approximate substitute for the change-of-variables relationship
(15) as well as a global partition-of-unity. The approach presented in this section, which conceptually follows
[13] (although its actual implementation concerning, e.g. explicit equivalence relations, differs from the latter
in essential ways), applies to cases in which the underlying surface contains no geometric singularities such as
corners, edges, etc.; the methodology is then enhanced in Section 5 to include cases in which geometric singu-
larities exist – which, to our knowledge, had not been considered previously.

4.1. Equivalence relation in a patch system

To carry out the program outlined above we begin by specifying an equivalence between points in regions
of different patches. We thus assume that for each 1 6 j, k 6 K a set Oj;k � Pj has been determined (with the
interpretation that in absence of error we would have Oj;k ¼ Ok;j ¼ Pj \ Pk); in particular, we assume
Oj;j ¼ Pj for all j. Together with these sets we assume ‘‘identification’’ maps ej;k : Oj;k 7!Ok;j (1 6 j, k 6 K)
are provided (in absence of error ej,k would equal the identity map in Pj \ Pk). These sets and maps are
assumed to satisfy the following requirements:

1. For each 1 6 j, k, ‘ 6 K we have
ej;j ¼ IdentityPj ; ej;k ¼ ðek;jÞ�1 and ð16Þ

for r 2 Oj;k such that ej;kðrÞ 2 Ok;‘ we have r 2 Oj;‘ and
ek;‘ðej;kðrÞÞ ¼ ej;‘ðrÞ: ð17Þ

(It follows from this assumption that, defining a relation � in the set [16j;k6KO

j;k ¼ [16j;k6KP
j;k by r1 � r2 if

and only if r2 = ej,k(r1) for some pair (j,k), the relation � is an equivalence relation.)
2. The function ej,k maps the set oOj;k n oPj into oPk; see Remark 5 for the operative definition of the bound-

ary operator o.

It is possible to construct equivalence functions {ej,k}j,k by means of simple projection surfaces (planar sur-
faces, parabolic surfaces, surfaces of revolution, etc.) such as those introduced in Section 3. A possible construc-
tion is demonstrated in Fig. 16: given a point r 2 Pj we may define ej,k(r) as the intersection (evaluated by say,
Newton’s method) of the patch Pk with the projection line that joins (uj, vj) and r = r(uj, vj). Note that some care
must be exercised: for example in order for the second of the conditions (16) to be satisfied in the configuration
depicted in Fig. 16 we must use projection lines orthogonal to a single projections surface, say Hj, in both, the
definition of ej,k and ek,j. In order for condition (17) to be satisfied, analogously, we must use a single projection
surface for the definition of all three equivalence functions ej,k, ek,‘ and ej,‘. Of course, this may well be unfea-
sible; in such cases alternative approaches may be used – including, for example, use of composite projection
manifolds resulting from smooth combinations of various projection surfaces, etc. Such complications did not
arise in any of the examples presented in this paper, however: in all cases use of projection surfaces underlying
the patch definitions sufficed to produce the needed overlap equivalence relationships ej,k.

4.2. Smooth partition-of-unity on a patch system

Once the functions ej,k are available a partition-of-unity on the non-conforming atlas may be constructed.
We define a partition-of-unity associated with the non-conforming atlas fðHj;Pj; rjÞ; j ¼ 1; . . . ; Kg to be a set
of functions {wj(uj,vj), j = 1, . . .,K}, such that

(i) wj is defined, smooth and non-negative in Hj, and it vanishes together with all of its derivatives in oHj

(ii) For each j and for r 2 Pj we have
X
fk:r2Oj;kg

wkððrkÞ�1ðej;kðrÞÞÞ ¼ 1
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Such partition-of-unity can be constructed by utilizing functions Wj, j = 1, . . .,K satisfying

1. Wj is a non-negative infinitely smooth function defined in Hj

2. Wj vanishes together with all of its derivatives on oHj n Bj

3. For each j and each tj 2 Hj at least one of the quantities Wk((rk)�1(ej,k(rj(tj)))), (k = 1, . . .,K) does not
vanish.

Indeed, if functions Wj satisfying points (1)–(3) are available then the functions wj given by
wjðtjÞ ¼ W jðtjÞ
X

fk:rjðtjÞ2Oj;kg

W kððrkÞ�1ðej;kðrjðtjÞÞÞÞ
,

ð18Þ
form a partition-of-unity. Functions Wj satisfying points (1)–(3) above can easily be constructed by means of
exponentials in square domains, star-shaped domains, etc.; see e.g. [4]. For efficiency it is often preferable to
use partitions-of-unity with small derivatives, which can be arranged by allowing for substantial overlap of the
patches Pj.

4.3. Blending of patch systems

Once a partition-of-unity has been constructed it is an easy matter to modify the parametrizations rj so that
their images match perfectly at overlaps. Indeed, defining
~rjðtjÞ ¼
X

fk:rjðtjÞ2Oj;kg

ej;kðrjðtjÞÞwkððrkÞ�1ðej;kðrjðtjÞÞÞÞ; ð19Þ
fPj ¼ Image of ~rj and eS to equal the union of fPj ; j ¼ 1; . . . ; K; eS is a classical differentiable manifold with
(conforming) atlas
fðHj;fPj ;~rjÞ; j ¼ 1; . . . ; Kg:

Examples of a blended surfaces resulting from the method described above are shown in Figs. 17 and 18;

the match in the overlap regions is exact to machine precision.
Fig. 17. Blending of smooth surfaces.

Fig. 18. Blending of smooth surfaces.
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5. Blending of singular surfaces

As mentioned above, at points where slope-discontinuities of a surface exist a special treatment is nec-
essary: for any reasonable truncation size a single finite Fourier series cannot accurately reproduce a sharp
edge, corner, etc. Clearly, however, the parametrization algorithm described in Section 3 can be used to
produce two or more smooth vector valued representations for the smooth surfaces that meet at a geomet-
ric singularity: a line where the slope is discontinuous, for example, is thus given as the intersection of two
smooth surfaces. For water-tightness, the boundaries of the various surfaces meeting at singularities must
match exactly – to machine precision. The surfaces obtained by the methods of Section 3 only represent
the corresponding body within the accuracy inherent in the given point cloud, however, and they are there-
fore bound to differ by that amount at singularities. As in the case of patch overlaps considered in the
previous section this presents a difficulty: water-tightness is essential for adequate numerical resolution
of partial differential equations throughout a domain boundary, and particularly so around edges, corners,
etc.

The problem of matching at singularities can be solved by means of appropriately defined error-correcting
functions defined in all the patches containing geometric singularities. We detail the procedure for curves first
and then, using corner-matched singularity curves, we introduce a methodology for matching of surface
singularities.

5.1. Corner-matching for curves

We consider a curve for which a complete patch system was produced by the methods of Section 3, with
overlaps blended by the methods of Section 4, and, without loss of generality, we assume the patches defined
by the parametrizations rj(tj) (aj < tj

6 bj) and rk(tk) (ak < tk
6 bk), which should have intersected at a corner

point for tj = bj and tk = bk, do not actually intersect there: we have
rjðbjÞ 6¼ rkðbkÞ:
The difference between these points is small: of the order OðeÞ of the error inherent in the curve
representations.

To proceed we introduce a new point rc which is to become the exact corner point in the matched repre-
sentation. There is considerable latitude in the choice of the point rc; the choices rc = rj(bj), rc = rk(bk) or
rc= any other point in a neighborhood of these points of a diameter OðeÞ is generally equally adequate.

The matching procedure is completed using smooth windowing functions pj = pj(tj) and pk = pk(tk) which,
defined in the intervals aj < tj

6 bj, satisfy pj(bj) = 1 and pk(bk) = 1, and which vanish a small distance (say, of
the order of 10% of the corresponding interval lengths bj � aj and bk � ak) away from the points bj and bk,
respectively. These windowing functions allow us to construct error-correcting functions
ejðtjÞ ¼ ðrc � rjðbjÞÞpjðtjÞ and ekðtkÞ ¼ ðrc � rkðbkÞÞpkðtkÞ: ð20Þ
Clearly, the parametrizations rj(tj) + ej(tj) and rk(tk) + ek(tk) are perfectly matched at the corner point.

5.2. Singularity matching for surfaces

A generalization of the corner-matching methodology for curves described in Section 5.1 can be used to
produce perfectly matched representations of surfaces along edges and other geometric singularities. The cor-
ner-matching method considered above proceeds by constructing error-correcting functions (20) – which cor-
rect departures that prevent preliminary parametrizations from meeting at corners. As discussed above, within
the margins of the numerical tolerance there is significant freedom in the selection of the corner point rc. In the
present problem of matching surfaces along edges, corners and other singularities, in turn, we must identify
appropriate matching curves and points – whose selection, like that of corner points rc, involves a degree
of flexibility.
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Our singularity matching methodology for surfaces can be summarized as follows:

1. Using the methodology described in Section 5.1, parametrize, blend and corner-match all edge curves.
2. Using projection surfaces, establish a correspondence (akin to that discussed in Section 4 for overlapping

surfaces) between boundaries of surface patches and edges parametrized as indicated in point 1; note that a
point on an edge may project (correspond) with points in two or more patches. In this approach the pro-

jection of an edge curve on one patch defines the trimming curve on that patch.
3. Use correction functions analogous to those defined by Eq. (20) to make all patches match the edges.
4. After all edges are matched blend all surfaces using smooth windowing functions, in a direct generalization

of the procedure detailed in Section 4.

This procedure gives rise to edges that are perfectly matched at corners, and surfaces that are perfectly
matched at edges and corners.

Fig. 19 shows two slightly different on-edge views of the wing around the quadruple slope-discontinuity
point, demonstrating the results of our edge matching technique can offer: edges are matched to machine
precision. Fig. 22 shows the image of Cartesian grids under the parametrization maps. Similar methods
have been applied to all surface representation problems we considered in regions where slope discontinuity
lines or points exist. Other types of singularities can be addressed in a similar manner; for example the
Fig. 19. Two slightly different on-edge views of the wing around the quadruple slope-discontinuity point, demonstrating the effectiveness
of the edge matching technique to produce perfectly sharp edges and water-tight geometries.

Fig. 20. Repair of bad-quality triangulation by means of the continuation method. Top: Original triangulation of the slope-discontinuity
area of the wing, showing poor triangulations. Bottom: Result of an application of the continuation method to this geometry, making
evident the beneficial effect of the Fourier continuation method as a geometry-repair agent.



Fig. 21. Close-ups on a large portion of the unstructured and parametrized representations of the fuselage tail.
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corner at the aft tip of the aircraft can be effectively resolved by using a cone as a projection surface and
appropriate oversampling, in such a way that a number of different points in the u � v plane correspond to
the corner in the cone. A constant boundary condition along the line corresponding the fuselage tip is
enforced. To produce a sufficiently large data set three copies of the u � v plane were placed side by side
in the angular direction u and the composite discrete parametrization, which turns around the conical sec-
tion three times, was used as input of the continuation method. The result of this procedure is shown in
Fig. 21 – which, in addition to demonstrating the effectiveness of the conical algorithm, shows, in a dif-
ferent context than considered previously in this text, the effectiveness of the continuation method to repair
defects in point-cloud inputs.
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Appendix A. Evaluation algorithm

It is interesting to note that a procedure related to that used in the main body of this paper to approximate
point clouds can also be used to evaluate with spectral accuracy truncated Fourier series of non-periodic
smooth functions. Again, the idea is to find a continuation of the given function to a smooth and periodic
function in a larger interval. We note that, although the approximation algorithm described in Section 2
and evaluation algorithm presented here share a conceptual basis, the actual details of the two algorithms dif-
fer significantly.

We describe our procedure using our usual spatial/frequency extension factors b = 2 and q = 0.5; see Sec-
tion 2.4. Let p̂k be the exact Fourier coefficients of a non-periodic Cn function p(x) (n an integer or n =1)
defined on the unit interval [0, 1]. If q̂‘ are the Fourier coefficients of some continuation q(x) of p(x) to the
interval [0, 2], then the corresponding Fourier coefficients of the continuation qðxÞ ¼

P
‘q̂‘e

pi‘x restricted to
the interval [0,1] can be determined analytically: The functions p(x) and q(x) will coincide in the interval
[0,1] if and only if
p̂k ¼
Z 1

0

qðxÞe�2pikxdx ¼
X
‘

q̂‘

Z 1

0

epið‘�2kÞxdx ¼
X
‘

Dk;‘q̂‘ ð21Þ
where
Dk;‘ ¼
1 if 2k ¼ ‘

2i=pð‘� 2kÞ if ‘ odd

0 otherwise:

8><>: ð22Þ
Clearly, the values q̂‘ can be obtained through solution of the linear system
Dq̂ ¼ p̂ ð23Þ



Fig. 22. Left: Logically Cartesian surface mesh induced by the parametrization of the surface wing around the slope-discontinuity line.
Right: unstructured mesh. Clearly, the logically Cartesian mesh can be refined easily near the edges, by simple incorporating additional
Cartesian lines in parameter-space, as needed.
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for the coefficients q̂. If an over-determined system is used, a solution of this problem is obtained in a least-
squares sense. To evaluate p in the interval [0, 1] we sum a truncated Fourier series for the function q – whose
Fourier coefficients q̂k were obtained as the solution of the problem (23).

A.1. Evaluation problem: implementation and numerical results

An example applying the periodic continuation idea to the evaluation problem is demonstrated by the eval-
uation of a truncated Fourier series for the non-periodic function f(x) = x. Of course, the direct summation of
the truncated Fourier series
Fig. 23
C1 co
f̂ k ¼
1=2 k ¼ 0

i=ð2pkÞ k 6¼ 0

�
ð24Þ
suffers from the Gibbs phenomenon. In contrast, using the coefficients obtained for the continuation to a peri-
odic function on [0, 2] does not exhibit such oscillations. This is demonstrated by the plots in Fig. 23, while the
error results in Table 7 display the expected super-algebraic convergence of the method.

More generally, the continuation method can be applied to non-periodic functions with additional discon-
tinuities. To demonstrate this we consider the function
. Left: Evaluation of the 128-mode truncated Fourier series of the function f(x) = x in the interval [0,1]. Right: evaluation of the
ntinuation of f to the interval [0,2] obtained from the same 128 Fourier coefficients (resolving the Gibbs Phenomenon).



Table 7
Errors for the solution of the evaluation problem for the function f(x) = x on the basis of N given Fourier coefficients
f̂ 0 ¼ 1=2; f̂ k ¼ i=ð2pkÞ for k 6¼ 0

M N Error Ratio d/dx err Ratio d2/dx2 err Ratio

4 8 5.0 · 10�2 7.5 · 10�1 5.3 · 100

8 16 2.0 · 10�3 2.5 · 101 8.7 · 10�2 8.6 · 100 2.2 · 100 2.4 · 100

16 32 3.8 · 10�6 5.3 · 102 4.6 · 10�4 1.9 · 102 3.7 · 10�2 5.9 · 101

32 64 1.5 · 10�11 2.5 · 105 5.0 · 10�9 9.1 · 104 1.2 · 10�6 3.0 · 104

64 128 3.1 · 10�14 4.8 · 102 2.1 · 10�11 2.4 · 102 1.1 · 10�8 1.1 · 102

M denotes the number of Fourier coefficients used for the continuation of f to the interval [0,2].

Table
Errors

M1

6
12
24
48

M1 an

Fig. 24
contin
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f ðxÞ ¼
x x 2 ½0; p=8Þ

1=2� x x 2 ½p=8; 1�

�
ð25Þ
whose Fourier coefficients can be calculated exactly and whose continuation is shown in Fig. 24. Each piece-
wise smooth portion of the function is continued smoothly to a periodic function defined on a larger interval,
and the convergence is super-algebraically fast, as demonstrated by Table 8. As a final example we consider
the discontinuous non-periodic function
f ðxÞ ¼
sinðcosð2x� 1=2ÞÞ x 2 ½0; 1=2Þ

0 x 2 ½1=2; 1�

�
ð26Þ
with Fourier coefficients calculated numerically. Table 9 demonstrates the expected super-algebraic conver-
gence of the continuation method (see Fig. 25).
8
for the solution of the evaluation problem for the function (25), using N given Fourier coefficients

M2 N Error Ratio d/dx err Ratio d2/dx2 err Ratio

10 32 1.6 · 10�3 6.1 · 10�2 1.3 · 100

20 64 4.3 · 10�6 3.8 · 102 4.7 · 10�4 1.3 · 102 3.4 · 10�2 3.9 · 101

40 128 3.7 · 10�11 1.1 · 105 1.2 · 10�8 4.0 · 104 2.7 · 10�6 1.3 · 104

80 256 6.3 · 10�14 5.8 · 102 5.9 · 10�11 2.0 · 102 3.4 · 10�8 7.7 · 101

d M2 denote the numbers of Fourier modes used for the continuation of the left and right branches of the given function.

. Left: Evaluation of the 128-mode truncated Fourier series of the piecewise smooth function 25. Right: Evaluation of the C1

uations of the two branches of f obtained from the same 128 Fourier coefficients (resolving the Gibbs Phenomenon).
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A.2. Comparison with polynomial interpolation and other methods for resolution of the Gibbs phenomenon

Comparison with high-degree polynomial interpolation. The properties of the continuation method differ sig-
nificantly from those of high-order polynomial interpolation; to demonstrate this we consider the problem of
approximating the famous Runge function y ¼ 1

1þ25x2 for �1 6 x 6 1. Table 10 displays results of applications
of the continuation method and polynomial approximation to the Runge function; the upper portion of this
table shows results obtained by approximations with oversampling, while the lower portion displays results
that result from approximations not using oversampling. The use of oversampling alleviates the severity of
the Runge phenomenon for polynomial interpolation but does not eliminate it: in neither case does the poly-
nomial approximation converge as N is increased. The continuation method converges in both cases: with and
without oversampling.
Table 9
Errors for the solution of the evaluation problem for the function 26, using N given Fourier coefficients

M1 M2 N Error Ratio d/dx err Ratio d2/dx2 err Ratio

4 4 16 5.0 · 10�3 8.3 · 10�2 6.8 · 10�1

8 8 32 9.2 · 10�5 5.5 · 101 4.4 · 10�3 1.9 · 101 1.2 · 10�1 5.6 · 100

16 16 64 7.9 · 10�8 1.2 · 103 1.1 · 10�5 4.2 · 102 9.3 · 10�4 1.3 · 102

32 32 128 1.5 · 10�13 5.3 · 105 5.5 · 10�11 1.9 · 105 1.4 · 10�8 6.6 · 104

M1 and M2 denote the numbers of Fourier modes used for the continuation of the left and right branches of the given function.

Table 10
Approximation errors for continuation and polynomial approximation

N = 64 N = 128 N = 256 N = 512

Continuation 5.5 · 10�3 1.0 · 10�4 5.9 · 10�9 2.3 · 10�13

Polynomial 1.4 · 10�2 1.8 · 10�2 1.5 · 10�2 1.4 · 10�2

Continuation 6.7 · 10�1 1.4 · 10�5 5.9 · 10�11 2.6 · 10�10

Polynomial 1.5 · 108 1.1 · 1019 1.0 · 1041 1.4 · 1085

Upper table: Continuation and polynomial approximation using oversampling, using N data points and N/2 Fourier/polynomial coef-
ficients, respectively. Lower table: Continuation and polynomial interpolation (without use of oversampling), using N data points and N

Fourier/polynomial coefficients, respectively.

Fig. 25. Left: Evaluation of the 128-mode truncated Fourier series of the piecewise smooth function (26). Right: Evaluation of the C1

continuations of the two branches of f obtained from the same 128 Fourier coefficients (resolving the Gibbs Phenomenon).
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Comparison with other methods for the resolution of the Gibbs phenomenon. In effect, both the continuation
based approximation and evaluation algorithms we have considered in this paper provide a resolution of the
well known Gibbs phenomenon – that is, these methods eliminate the oscillatory behavior exhibited by Fou-
rier series of discontinuous functions at points of discontinuity, and the associated slow convergence through-
out the interval of periodicity. The Gibbs phenomenon has attracted much attention over the last quarter
century; here we mention work based on filtering of high-order Fourier coefficients [27]; integration rule based
on Chebyshev-like quadrature points [29]; smoothing [23]; Gegenbauer polynomials [22,24]; built in singular-
ities [19,20]. Of these approaches, the Gegenbauer-polynomial method is the only one that, like ours, resolves
the Gibbs phenomenon throughout the interval of definition of the function, including the endpoints of the
interval without constructing and/or using the jumps of the function and its derivatives at the edges. This is
the type of algorithm we need in our problem of interpolation of surfaces around edges, and we thus may con-
fine our comparative discussion to references of the Gegenbauer-polynomial method.

Before moving to explicit performance comparisons we point out a few issues of interest. We note that, (i)
although the theoretical considerations presented in Section 2.3 provide evidence for the rapid convergence of
the continuation method, the discussion of that section (the only theoretical discussion of the continuation
method of which we are aware) falls short of a proof of convergence. In contrast, convergence proofs have
been given for the Gegenbauer approach; see [24] and references therein. In addition, (ii) the present imple-
mentation of the continuation method is based on a direct least-square solve requiring Oðn3Þ operations, while
implementations of the Gegenbauer approach have been given with a cost of Oðn logðnÞÞ operations. With
regards to point (ii) we mention that we have produced robust Oðn logðnÞÞ implementations of the continua-
tion method – on the basis of iterative least-square solvers [1]. A description of the accelerated methodology is
not incorporated in the present text since, for the small values of n relevant to the work considered in this
paper, such accelerated algorithms offer limited benefits. With regards to point (i), on the other hand, we sug-
gest that such proofs should be pursued – in view of the excellent convergence properties of the continuation
method demonstrated throughout this text and, in particular, in following set of comparisons.

Fortunately it is not difficult to find a good basis for comparison between the continuation method and the
Gegenbauer approach: in Fig. 3 Right of reference [21], for example, a demonstration is provided of the
approximation properties of the Gegenbauer-polynomial method through application to non-smoothly-peri-
odic sinusoids with frequencies x = 1.4, 2.4, 3.4 and 4.4. By consideration of that figure we see that, indeed,
the error arising from the Gegenbauer-polynomial method actually increases substantially (to a value of

10,000) before it starts its exponential decrease. No such undesirable behavior is observed in the results pro-
vided by the continuation method, which, in this case, actually exhibits a monotone super-algebraic decrease
and yields full double-precision accuracy through use of approximately 80 Fourier modes. Use of a full 125
modes with the Gegenbauer-polynomial method, in turn, gives rise to errors of the order of 10�2 for the high-
est frequency. Even more importantly, use of a small number of modes (20–40) in the continuation method
gives rise to useful interpolations, while, in this regime, the corresponding results given by the Gegenbauer-
polynomial method contain 100% errors at best, and 1,000,000% errors in some cases. The more recent
Table 11
Comparison between errors for the solution of the evaluation problem for the interpolation of a discontinuous non-periodic function in
Fig. 26 using N Fourier coefficients to determine continuations from the subintervals [0,1/4) and [1/4,1]

N Continuation Gegenbauer Freud

16 8.0 · 10�2 – –
32 1.0 · 10�2 – –
64 1.1 · 10�3 6.1 · 10�1 8.9 · 10�1

128 2.6 · 10�6 5.7 · 10�1 1.4 · 10�1

256 3.9 · 10�12 1.3 · 10�4 1.8 · 10�4

512 5.3 · 10�13 1.5 · 10�6 1.0 · 10�7

1024 1.8 · 10�12 1.4 · 10�7 5.3 · 10�13

2048 4.5 · 10�13 9.0 · 10�7 5.2 · 10�14

Second column is obtained using N/4 for M1 and M2 Fourier modes, respectively. Second and third columns are reproduced from
reference [25].



Fig. 26. Evaluation of the truncated Fourier series with 128 modes for a discontinuous non-periodic function.
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Gegenbauer and Freud results presented in Table 11 for the function displayed in Fig. 26 above (see Ref. [39])
are consistent with this observation; note the favorable performance exhibited by the continuation method in
this case. (The Freud method is a variant of the Gegenbauer polynomial which, unlike the original algorithm,
is stable for large values of N.) For two-dimensional problems, finally, all three of these methods require the
discretization domain to be a square in the plane – a condition not required by the continuation approach.
This fact is central in our surface representation applications of the continuation method; see e.g. the right
graph in Fig. 7.

Appendix B. Chebyshev transform

Unlike a function’s Fourier coefficients, the series coefficients produced by the continuation method cannot
be bounded in terms of the maximum absolute value of the function approximated: the continuation
coefficients can be quite large. This fact can be appreciated by considering the column labeled Cmax in the
upper portion of Table 12, which displays the maximum absolute values of the continuation coefficients of
a certain function for various discretization sizes N. (The function used in this example was chosen as one
for which this effect is particularly noticeable; for the function y = x and using our usual prescriptions, a
Table 12
Errors in continuation–approximations of the function y = exp(sin(5.4px � 2.7p) � cos(2px)) in the interval [0,1] – with continuation
interval [0,2] and numbers N and M = N/2 of discretization points and modes, respectively

N Error Ratio d/dx err Ratio d2/dx2 err Ratio Cmax Dy1 Dy2

16 3 · 10�1 7 · 10�1 8 · 10�1 5 · 101 2 · 10�13 2 · 10�4

32 6 · 10�2 5 · 100 8 · 10�1 9 · 10�1 3 · 100 3 · 10�1 3 · 103 9 · 10�13 5 · 10�4

64 8 · 10�3 7 · 100 4 · 10�1 2 · 100 5 · 100 6 · 10�1 10 · 107 6 · 10�8 5 · 10�4

128 9 · 10�7 9 · 103 6 · 10�5 8 · 103 2 · 10�3 3 · 103 1 · 108 1 · 10�7 5 · 10�4

256 1 · 10�13 7 · 106 3 · 10�11 2 · 106 2 · 10�9 1 · 106 2 · 100 5 · 10�13 5 · 10�4

16 3 · 10�1 7 · 10�1 8 · 10�1 1 · 100 1 · 10�13 1 · 10�4

32 6 · 10�2 5 · 100 8 · 10�1 9 · 10�1 3 · 100 3 · 10�1 1 · 100 5 · 10�15 6 · 10�6

64 8 · 10�3 7 · 100 4 · 10�1 2 · 100 5 · 100 6 · 10�1 1 · 100 3 · 10�14 3 · 10�5

128 9 · 10�7 9 · 103 6 · 10�5 7 · 103 4 · 10�3 1 · 103 1 · 100 3 · 10�14 3 · 10�5

256 1 · 10�13 7 · 106 4 · 10�11 2 · 106 9 · 10�9 5 · 105 1 · 100 3 · 10�14 3 · 10�5

Uniform discretizations. Upper table: unmodified continuation method. Lower table: continuation method followed by Chebyshev
expansion in the interval [0,1]. Cmax denotes the maximum absolute value of the coefficients in the expansions via continuation (upper
table) and continuation-Chebyshev (lower table). D y1 = jfapprox(.5 + 10�14) � f(.5)j and D y2 = jfapprox(.5 + 10�5) � f(.5)j, where fapprox is
the continuation approximation (upper table) or the continuation-Chebyshev approximation (lower table).
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double-size continuation interval and M = N/2, for example, the continuation coefficients are uniformly
bounded by one for all the values of N needed to reach machine precision accurate approximations of the
function.) Remarkably, in spite of the large values of the continuation coefficients, the approximations of
the function and its derivatives are of high-quality throughout the approximation interval [0, 1]: the maximum
errors displayed in Table 12, which were evaluated through comparison of the approximations with the exact
values at 10,000 points, make an eloquent case in these regards.

For cases in which use of the continuation method does give rise to large coefficients (as is the case, say, for
N = 32, N = 64, N = 128 in the upper portion of Table 12) it is possible, if desired, to transform the contin-
uation series into a series representation which, while bearing small coefficients, is as accurate as the original
continuation series. Such an alternative series can be obtained, quite simply, by sampling an N-point contin-
uation series at an N-point Chebyshev grid (respectively equispaced grid in the periodic case, such as, e.g. the
functions of the u variable in the aircraft nose considered in Section 3.2) and evaluating the corresponding
Chebyshev (respectively Fourier) expansion. The results of this procedure are demonstrated in the lower por-
tion of Table 12: the approximations obtained are essentially as accurate as those given by the continuation
series. Of course, the Chebyshev coefficients are nicely bounded in terms of the maximum value of the function
approximated.

Depending on the application at hand, use of series representations containing small coefficients may or may
not be a matter of importance. A simple illustration of the import of use of a series with large coefficients can be
appreciated in the two rightmost columns of Table 12, which display the values Dy1 = jfapprox(.5 + 10�14) �
fapprox(.5)j and Dy2 = jfapprox(.5 + 10�5) � fapprox(.5)j computed from the continuation series (upper portion)
and the Chebyshev series derived from it (lower table). Clearly, owing to the large values of the continuation
coefficients and associated cancellation errors, the quantity Dy1 arising from the continuation series is orders
of magnitude larger than both, the actual variation in the function and the variation that would be exhibited
by the continuation series under exact arithmetic. The Chebyshev series obtained from the continuation series
does not suffer from this difficulty, of course, note that the quantity Dy2 was correctly computed even without
recourse to a Chebyshev re-expansion.

The value of this approach may be significant under certain circumstances. Although, the Chebyshev series
is not more accurate than its parent continuation approximation, its use in conjunction with high-order
numerical methods may allow for convergent results beyond levels that could be possible by using the contin-
uation method alone. Although this would not result in any better approximations of, say, the solution of an
associated physical problem under consideration, it would allow to establish the convergence of the numerical
method at hand and, thus, it could be used to relegate any potential uncertainties in numerical results to cor-
responding uncertainties in the surface representation – which could then be tackled through use of additional
measurements, appropriate refinements, etc. In short, this would allow to produce convergent results and help
Fig. 27. Left: original nacelle front mesh. Right: a patch for the mesh on the left figure obtained from the continuation method followed
by a Chebyshev transform.
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focus on the cause of, say, discrepancies between numerics and experiments, as lying not in a numerical solver
but rather on the quality of the surface representation.

In Fig. 27 we demonstrate the results of this Chebyshev re-interpolation method on a portion of the aircraft
nacelle. Starting from the mesh depicted in Fig. 27 left, we produce a single patch, depicted in Fig. 27 right.
The magnitude of Fourier coefficients arising from the continuation method is of the order of 106; after use of
a Chebyshev transform, the results of which are rendered in Fig. 27 right, the magnitude of the Chebyshev
coefficients is of order 1.
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